Intermittency of Superpositions of Ornstein-Uhlenbeck Type Processes

نویسندگان

  • Alla Sikorskii
  • Irena Tešnjak
چکیده

The phenomenon of intermittency has been widely discussed in physics literature. This paper provides a model of intermittency based on Lévy driven Ornstein-Uhlenbeck (OU) type processes. Discrete superpositions of these processes can be constructed to incorporate non-Gaussian marginal distributions and long or short range dependence. While the partial sums of finite superpositions of OU type processes obey the central limit theorem, we show that the partial sums of a large class of infinite long range dependent superpositions are intermittent. We discuss the property of intermittency and behavior of the cumulants for the superpositions of OU type processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes

This paper discusses Bayesian inference for stochastic volatility models based on continuous superpositions of Ornstein-Uhlenbeck processes. These processes represent an alternative to the previously considered discrete superpositions. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. We develop efficient Markov c...

متن کامل

Inference in Infinite Superpositions of Non-Gaussian Ornstein–Uhlenbeck Processes Using Bayesian Nonparametic Methods

This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein–Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of t...

متن کامل

Mixing Conditions for Multivariate Infinitely Divisible Processes with an Application to Mixed Moving Averages and the supOU Stochastic Volatility Model

We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [18] and Rosiński and Żak [23] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein-Uhlenbeck (...

متن کامل

First Passage times of (reflected) Ornstein–uhlenbeck Processes over Random Jump Boundaries

In this paper we study first passage times of (reflected) Ornstein–Uhlenbeck processes over compound Poisson-type boundaries. In fact, we extend the results of first rendezvous times of (reflected) Brownian motion and compound Poisson-type processes in Perry, Stadje and Zacks (2004) to the (reflected) Ornstein–Uhlenbeck case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017